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Using Sidorov’s ideas and analytical methods for solving the problem of the shock-free compression of a gas acted upon by a 
piston, a new parametric form of the solution of the equation for the self-similar velocity potential of a gas is proposed. This 
enables the problem of constructing the flow with an unlimited increase in the gas-dynamic parameters to be reduced to solving 
the Cauchy problem for a single ordinary differential equation with a bounded integration interval. The solution of the gas-dynamic 
equations thus obtained may be of interest in constructing the process of unlimited compression of a perfect gas, at rest at the 
initial instant of time inside a solid of revolution of the “plate” type, and its describes the gas flow in a certain part of the compressed 
volume. Asymptotic estimates of the gas-dynamic quantities are established analytically. 0 2003 Elsevier Ltd. All rights reserved. 

Different classes of exact solutions of the equations of gas dynamics have been obtained, which have 
been used to construct the processes of unlimited shock-free compression of a perfect gas, at rest at 
the initial instant of time inside a certain volume [l-4]. As a rule, these solutions describe the gas flow 
only in a certain part of the compressed volume, while in the remaining part the solutions have to be 
determined numerically. However, in this case one can carry out a qualitative analysis of the properties 
of the gas flows at points where they are constructed analytically. 

The form of the initial volume of gas, which is considered in this paper, has apparently not previously 
been investigated. A numerical solution for a similar, though more complex, initial configuration has 
been obtained* by a different method. 

The problem of finding an accurate solution which describes the gas flow for least part of the 
compressed volume is of interest. The general approach to the construction of a solution is the same 
as that proposed by Sidorov [4]. Further, by analogy with well-known methods [5,6&s the asymptotic 
properties of the exact solution constructed are investigated analytically in the case when the adiabatic 
exponent y is taken from the range [l, 31. A check that the flow obtained continuously adjoins the region 
where the gas is at rest is carried out by numerical integration of the ordinary differential equation, 
and examples of numerical calculations for y = 5/3 and y = 7/5. 

1. FORMULATION OF THE PROBLEM 

We will consider the potential flows of a uniform perfect non-viscous and non-heat conducting gas. The 
following equation of state corresponds to such flows 

p=ApY, A=const>O, y=const> 1 

Suppose the gas is at rest at the initial instant of time inside a solid of revolution, the qualitative form 
of which is shown in Fig. 1. The Ox2 axis is the axis of symmetry and the 0x9~ plane is the plane of 
symmetry. The initial volume is obtained from a solid of revolution with generatrix ABBRAIB& A by 
removing the cone BB30B1B2. 
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Fig. 1 

We will introduce the following notation 

r=- J x: +x:, 2= x2 

We will consider axisymmetrical flow, in which case all the gas-dynamic quantities depend solely on 
the variables r and z, and it is sufficient to consider the part of the plane Ozr (Fig. 2), bounded by the 
conditions r c 0 and z < 0. At the initial instant of time, t = -1, the gas was at rest in the triangleDO, 
the angle B = 7c/2, the section A0 is a fixed impenetrable wall, and the line&30 is the initial position 
of a compressing piston, which at a certain instant of time t E (-1, 0) takes the form DEFHO. The 
unperturbed gas at this instant of time is in the triangle GHO. 

We will change to dimensionless variables, in which the velocity of sound in the unperturbed gas is 
equal to unity, and choose the length of the wall BO to be equal to unity, in which case, the sonic 
perturbation GH arrives at the point 0 at the final instant of time t = 0. Hence, the length of the section 
A0 is arbitrary in specifying the initial geometry of the compressed volume. 

We will formulate the problem of finding an exact solution which describes the flow far from the walls 
BOB1 and BIOBz (Fig. 1) in the region adjoining&* and bounded by the characteristic surfaces. In 
Fig. 2 the region DEG corresponds to this part of the compressed volume (GE is the characteristic 
surface). Among the solutions we will seek those which, without the formation of shock waves, lead to 
an unlimited increase in the density on approaching the final instant of time. 

According to well-known results [3, 41, the velocity potential can be sought in the form 

W, z, r) = (t + l)K- ?(r(k, rl) - 1/2(c2 + rl’)), K = const 

where 5 = z/t, q = r/t are self-similar variables. To find the function I we must solve the equation 

r+,,- i)+2rgrqrsq+r$rqq- 1)-~~(r~~+r~~-3+1-'r,) = 0 WI 

where the square of the velocity of sound is equal to 

c2 = K(r- i/z(ri+ri)), K = y-i (1.2) 

In the plane of self-similar variables, the solution of Eq. (1.1) must be constructed in the unlimited 
region D’G’E’ (Fig. 3) where G’E’ is the characteristic and E’ and D’ are infinitely distant points. From 
the fact that the flow continuously adjoins the region at rest at the point G’ = (0, qa) we have the 
equations 
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Fig. 2 

Fig. 3 

w 7\0) = lc-’ - l/211:9 r,m q)) = 110 (1.3) 

The condition that there is no flow through the line of symmetry EC can be written in the form 

rpA = 0 (1.4) 

We will seek a solution of the form r = r(q). In this case the initial problem reduces to the Cauchy 
problem for the ordinary differential equation 
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Qrlrl - 1) - cZ(rqq - 3 + n+,) = 0, c2 = qr - im-$ 

with initial data (1.3); condition (1.4) is satisfied automatically. 

2. REDUCTION OF THE EQUATION FOR THE VELOCITY POTENTIAL 
TO A FIRST-ORDER ORDINARY DIFFERENTIAL EQUATION 

We assume the following form of the solution of Eq. (1.5) 

q(a) = qoexp 7% 
t 1 

, r-(a) = a$ 
a 

(1.5) 

(2.1) 

The constants q. and a0 will be found later. We substitute the following expressions for the derivatives 
of the functions r 

(2.2) 

into Eq. (1.5). After some simplifications we obtain a first-order differential equation for the function 
4s) 

da - = G(s, a) = 
S((2a - S)2(2 + K) - 2Ka) 

ds 2(2a-3s- 1)(2a-s)*+~(4(a-~)-3)((2a-s)*-2a) 
(2.3) 

and for this equation we consider the Cauchy problem with initial condition a(0) = Z > 0 for different 
values of Z 

When s = 0 the denominator of the right-hand side of Eq. (2.3) only vanishes when 

a=o,;,a*; a*=& 
4(K+ 1) (2.4) 

For the remaining values of Z the equality G(0, Z) = 0 is satisfied; of course, in the neighbourhood of 
the points s = 0 the following representation holds 

a = ri+Als2+o(s2), A, = const#O 

Hence it follows that 

Hence, the solution of Eq. (1.1) will only be defined for TJ =S const c 00, and in this case this solution 
describes the compression of a gas to a certain finite degree of compression. 

The Singular point of Eq. (2.3). The function G has a singularity at the point (0, a,) when a” = a,. 
We will put s1 = a - a *, s2 = S, and in the numerator and denominator on the right-hand side of Eq. 
(2.3) we will isolate the terms that are linear in s1 and s2 

ds1 - = G(s~,u,+s,) = aIlSI + =1p* + f,O,9 32) (2.5) 
ds2 a21s1 + a229 + f2blr 32) 

(2.6) 
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a21 = 
3K(2 - K) 3K(2K2+K-4) 

K+l ’ 
a22 = - 

2(lc+ l)* 

It can be verified that the following inequalities are satisfied when K < 2 

(a,, -a,,)* + 4q2a2, > 0, alp22 - a12a21 < 0 (2.7) 

It follows [7] from formulae (2.5)-(2.7) that the singular point is a saddle. 
We will seek the solution of Eq. (2.3) for which ,l&r+r” a(s) = a,. Consider the linearized equation 

ds, a12s2 -= 
ds2 a21 $1 + a22s2 

for which there are two solution, which possess the property .vl + 0 when sZ + 0: 

s, = kiS2, i=l,2; k,<O<k,<l 

where col(k;, 1) are the eigenvectors of the matrix,4 = (aij)i.l = I_ 2 [8]. We additionally define 

G(O,a,) = k, = -~K~-K+++ -81C3+9K2+24K+16 

4(- K2+ lC+2) 

after which we can numerically solve Eq. (2.3). 

3. THE PROPERTIES OF THE SOLUTION OF EQ. (1.5). 
THE RESULTS OF CALCULATIONS 

Continuous adjoining of the solution to the region of rest. The initial condition a(O) = a, for Eq. (2.3) 
guarantees that the corresponding solution of Eqs (1.1) and (1.5) increases without limit as n -+ m. 
We will determine IJO for which conditions (1.3) are satisfied. It follows from formulae (1.3), (2.1) and 
(2.2) that the following equalities must be satisfied at the point i = no 

r-q2/2 =(a- 1/2)n2 = Km', r,, -?J =(2a-s- l)r( = 0 

We determine numerically the value of so - the root of the equation 

(p(s) = 2u(s) - s - 1 = 0 

and we put 

(3.1) 

a0 = u(so), q. = (K(aO - l/2))-“* 

The results of a calculation of the functions a(s) and q(s) are represented in Fig. 4 for y = 513 (in 
this case so = 0.866, u. = 0.933 and q. = 1.86, curves 1) and for y = 7/S (in this case so = 1.78, 
a0 = 1.39 and no = 1.68, curves 2). 

The churucteristic G’E’. The directions of the characteristics of Eq. (1.1) have the form 

Taking into account the fact that, in the region D’G’E’ of the plane of the self-similar variables, the 
solution has the form I = I(q), to find the characteristics G’E’, emerging from the point G’ = (0, Q), 
we need to solve the Cauchy problem 
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a 

1.5 

1.0 

0.5 

Fig. 4 

(3.2) 

The radicand in the numerator on the right-hand side of Eq. (3.2) is equal to 

r;-c2 = (1 + 1/2Ic)r-T, - lcr = q2w(s) 

y(s) = (1 + 1/2lc)(2a - S)2 - KU 

For y = 7/5 and y = 5/3 we numerically verified that the function v(s) is strictly positive. The denominator 
contains the velocity of sound - a positive quantity. Hence, parabolic degeneracy of Eq. (1.1) does not 
occur on ‘the characteristic G’E’. To construct the solution over the whole volume DFHO (Fig. 2) it is 
further necessary to solve the problem in the region H’G’E’ with data on the characteristics G’H’ and 
G’E’ (Fig. 3.) 

Asymptotic estimates of the velocity, the density and the energy costs. 

Assertion. Consider the region DEG at a certain instant of time to > -1. For any gas particle from 
the region DEG constants R,, V, and D, exist, which depend on the coordinate r of the gas particle 
at the instant of time t = to, such that as t + 0 the following asymptotic relations hold 

r(t) - R*(-t)‘-2a’, u(t) - V*(-t)-2a*, p(t) - D*(-tfa*IK (3.3) 
where 

R,,~R*IR,,<O, O<V,,~V*IV-, 

O<DtiSD*ID-, 

R -, Rminr VW, Vmh, D-, Dti = const # 0 

where the constants R,,, V,,, D,, are independent of the choice of the particle and the value of to. 

Proof. For a certain chosen particle we will determine the asymptotic form of q(t) as t + -0. We have 

$ = q-r, = (1 - %+A - 0 + %a - a,))ll 
(3.4) 

a, - s - 2(a - a,))q 
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We separate the variables in the last equation 

dt 
i = I(-2u*-s-?(u-u*))q = I&+fo 

fo = jf 4, fl = 2u*q(-k* +f2)1 f* = -s-2(a-a,) 

We will estimate the quantities fo, f, and A. Since, as a -+ +a *, the following asymptotic relations are satisfied 

s = (u-a*)lk,+o(u-a,), q = -constx(a-a*) -k, 

then 

fz = -s-2(a-a,)-constx(a-a,)-constxq 
-l/k, 

Consequently, f. is a bounded function. We finally obtain 
1 

-t = efoq 
-r;;; 

, q = e -‘“Go-2a’ - const x (-I) -20, , t+-0 

We choose R2 as the constant R,, for the point D, Fig. 2. The correctness of the second estimate of (3.3) follows 
from formula (3.4). The first two formulae of (3.3) are proved. 

We will now prove the last formula of (3.3). We investigate the law of motion of a certain chosen particle. The 
equation of the z coordinate is integrated in explicit form 

dzldt=-TS+k=zlt, z=z& z,,=const (3.5) 

It follows from the first relation of (3.3) that 

z(t) = oW)h S(t) = 4tlO)), t + 0 

We substitute the expression for the function r in terms of the quantities a and q into formula (1.2) 

c2 = a(s)q’, a(s) = K@(S) - l/2(2&) - sj2) 

where 
a(0) = wz*( 1 - 2u,) > 0 

Taking into account the definition of the velocity of sound 

c2 = apI+, p = ApY 
we obtain 

P-c 
2/x _ q2lX 

The assertion is proved. 

The work of the piston increases the kinetic energy (IQ and the internal energy (Ei) of the gas. 
Suppose I/ is the volume occupied by the gas and u,, and pmax are the greatest values of the velocity 
and density respectively. Then (the integrals are taken over the volume L’) 

By analogy with the well-known approach [3] we assume that the greatest order of increase in the 
gas-dynamic quantities is observed in the region DEG, Fig. 2. Using the estimates of the velocity and 
density (the last two estimates of (3.3)), we obtain 

E, - const Ei - const(-t)4n*, t + 0 
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Concluding remarks. The reduction of the problem of finding the self-similar velocity potential to a 
Cauchy problem for an ordinary differential equation with a limited integration interval enables us to 
say that an exact solution has been obtained for the initial problem. 

The proposed approach enables one, first, to obtain a solution of Eq. (1.1) which ensures an unlimited 
increase in the gas-dynamic quantities in the initial problem, and second, enables one to carry out a 
qualitative analysis of the properties of the flow obtained. 

This research was supported financially by the Russian Foundation for Basic Research (00-15-96042 
and 02-01-00047). 
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